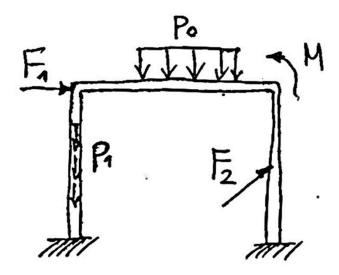
Warsaw University of Technology

Faculty of Power and Aeronautical Engineering

WARSAW UNIVERSITY OF TECHNOLOGY


Institute of Aeronautics and Applied Mechanics

Finite element method (FEM)

1D frame finite element

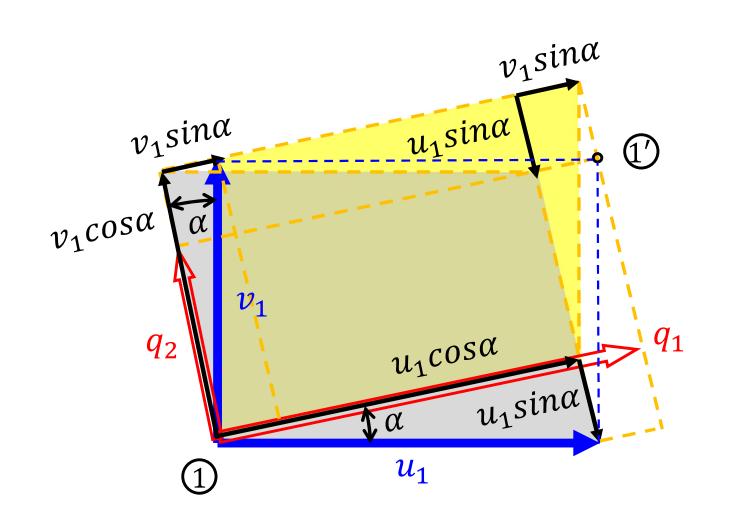
05.2021

PLANE FRAME

Frames - structures made of members rigidly connected. The members can be loaded at any location by concentrated or/and distributed forces, tractions and moments. They carry all possible internal forces; (normal and shear forces, bending moments and torque)

Examples of frames

power hang glider


engine mount

building frame

FRAME ELEMENT 4 95 96 94 0, z VA a =0 ark 41 X (bar + beam) QD 1 X Ui 9/1 92 01 u_2 6×1 6+1 9,4 V2 95 c=cosa 02 96 $S = sin \alpha$

$$q_{1} = u_{1} \cdot \cos\alpha + v_{1} \cdot \sin\alpha = c \cdot u_{1} + s \cdot v_{1}$$
$$q_{2} = -u_{1} \cdot \sin\alpha + v_{1} \cdot \cos\alpha = -s \cdot u_{1} + c \cdot v_{1}$$
$$(c = \cos\alpha ; s = \sin\alpha)$$

$$\begin{aligned} q_{1} &= C \cdot u_{1} + s v_{1} + 0 \cdot \theta_{1} + 0 \cdot u_{2} + 0 \cdot v_{2} + 0 \cdot \theta_{2} \\ q_{2} &= -s \cdot u_{1} + c \cdot v_{1} + 0 \cdot \theta_{1} + 0 \cdot u_{2} + 0 \cdot v_{2} + 0 \cdot \theta_{2} \\ q_{3} &= 0 \cdot u_{1} + 0 \cdot v_{1} + 1 \cdot \theta_{1} + 0 \cdot u_{2} + 0 \cdot v_{2} + 0 \cdot \theta_{2} \end{aligned}$$

$$\begin{array}{l} 94 = 0 \cdot u_{1} + 0 \cdot v_{1} + 0 \cdot \vartheta_{1} + 0 \cdot u_{2} + s \cdot v_{2} + 0 \cdot \vartheta_{2} \\ 95 = 0 \cdot u_{1} + 0 \cdot v_{1} + 0 \cdot \vartheta_{1} - s \cdot u_{2} + c \cdot v_{2} + 0 \cdot \vartheta_{2} \\ 96 = 0 \cdot u_{1} + 0 \cdot v_{1} + 0 \cdot \vartheta_{1} + 0 \cdot u_{2} + 0 \cdot v_{2} + 1 \cdot \vartheta_{2} \end{array}$$

EA EA Le O 12EZ le³ 6EZ le² <u>6EJz</u> le² LEJz le 6512 4510 4510 125)2 13 e 1 KJe 6<u>E</u>]z 6×6 0 EA C 0 EA 0 ()1252 123 123 0EJ2 122 6EJ2 62 12Eh 0 4<u>EJ</u>2 le 6EJ2 62 0

8